No se encontraron comentarios.
Tema: Dominio Lógico.
Dominio Lógico.
El funcionamiento del computador se basa en el dominio de las señales que se describieron en el ejemplo anterior, pero también un computador es mucho más complejo que aquellas señales, el sólo hecho de mirar la pantalla y ver la metáfora del mundo que aquella representa, hace surgir preguntas tales: ¿cómo funciona esto? O sí algo ya se sabe ¿cómo de un dominio tan pequeño, el de las señales, es posible obtener otro tan complejo como lo que se observa en la pantalla?
Para responder aquellas preguntas se debe partir desde el mismo dominio simple de los dos estado originales, el cual es posible representar por un conjunto de símbolos como { 0, 1 } o { V, F }, símbolos que describen a { -1.5 volts, +4.0 volts } respectivamente.
Pero se está frente a la misma situación anterior, sólo se ha cambiado la forma, pero ese conjunto de símbolos no tiene ninguna potencialidad, de ninguna forma es posible construir algo con aquellos símbolos.
Existe, en las matemáticas, un álgebra llamada Algebra de Boole. Fue desarrollada originalmente por George Boole, alrededor de 1850. La importancia de esta álgebra deriva de los trabajos de Claude Shannon en 1937, quién la utiliza para describir los circuitos digitales.
Un álgebra es posible definirla, muy simplificadamente, como un dominio en que además de un conjunto de elementos existe un conjunto de operadores u operaciones que permiten operar con aquellos elementos, generando elementos del propio dominio o de otros.
Así, el Algebra de Boole se describe como el siguiente dominio = ( { 0, 1 }, { And, Or, Not } ), donde el conjunto { And, Or, Not } corresponde al conjunto de operadores. Los símbolos con qué se representan estas operaciones son propios de esta visión simplificada del álgebra, ya que en el original son { ^, v, ~ } o desde el punto de vista del diseño de circuitos en ingeniería los símbolos que se utilizan son { ·, +, - }.
Otra propiedad de un Algebra es la utilización de variables que permiten representar, en general, cualquiera de los elementos del conjunto. Esta característica permite definir nuevas operaciones a partir de las originales o primitivas del álgebra. Así, una variable X definida sobre le Algebra de Boole puede tomar valores { 0, 1 }, por ejemplo X = 1, o X = 0. Para que sea más simple de entender se recomienda considerar 0 = falso y 1 = verdadero.